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a b s t r a c t 

To uncover the genetic underpinnings of brain disorders, brain imaging genomics usually jointly analyzes 

genetic variations and imaging measurements. Meanwhile, other biomarkers such as proteomic expres- 

sions can also carry valuable complementary information. Therefore, it is necessary yet challenging to in- 

vestigate the underlying relationships among genetic variations, proteomic expressions, and neuroimaging 

measurements, which stands a chance of gaining new insights into the pathogenesis of brain disorders. 

Given multiple types of biomarkers, using sparse multi-view canonical correlation analysis (SMCCA) and 

its variants to identify the multi-way associations is straightforward. However, due to the gradient domi- 

nation issue caused by the naive fusion of multiple SCCA objectives, SMCCA is suboptimal. In this paper, 

we proposed two adaptive SMCCA (AdaSMCCA) methods, i.e. the robustness-aware AdaSMCCA and the 

uncertainty-aware AdaSMCCA, to analyze the complicated associations among genetic, proteomic, and 

neuroimaging biomarkers. We also imposed a data-driven feature grouping penalty to the genetic data 

with aim to uncover the joint inheritance of neighboring genetic variations. An efficient optimization 

algorithm, which is guaranteed to converge, was provided. Using two state-of-the-art SMCCA as bench- 

marks, we evaluated robustness-aware AdaSMCCA and uncertainty-aware AdaSMCCA on both synthetic 

data and real neuroimaging, proteomics, and genetic data. Both proposed methods obtained higher asso- 

ciations and cleaner canonical weight profiles than comparison methods, indicating their promising capa- 

bility for association identification and feature selection. In addition, the subsequent analysis showed that 

the identified biomarkers were related to Alzheimer’s disease, demonstrating the power of our methods 

in identifying multi-way bi-multivariate associations among multiple heterogeneous biomarkers. 

© 2021 Elsevier B.V. All rights reserved. 
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i An update to this article is included at the end
. Introduction 

Alzheimer’s disease (AD) is a multifactorial neurodegenerative 

isorder which involves many abnormal alterations happening to 

he brain. For example, the hippocampus usually exhibits atrophic 

atterns in AD-affected brain, and simultaneously, the apolipopro- 

ein E (APOE) concentration is also altered in AD patients and 

hus show relevance to AD pathology ( Gupta et al., 2011; Soares 
∗ Corresponding author. 

E-mail address: dulei@nwpu.edu.cn (L. Du). 
1 Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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t al., 2012 ). Despite an increasing number of studies during the 

ast decade, the pathological mechanism of AD still remains un- 

ertain ( Association, 2019 ). Therefore, jointly analyzing multiple 

ypes of biomarkers, such as magnetic resonance imaging (MRI) 

erived imaging measurements ( Feldman et al., 2020; Fan et al., 

020 ), blood-based proteomic expression levels and genetic vari- 

tions, and investigating their associations could deepen our un- 

erstanding of the pathology of AD. Additionally, a combination of 

ultiple different types of biomarkers as well as their interplays 

ould also increase the reliability and specificity of AD diagnosis, 

s many biomarkers are not exclusive to AD. 

During the last decade, many brain imaging genomic studies 

rose to investigate the association between two types of biomark- 

rs. A recent systematic review ( Shen and Thompson, 2020 ) 

howed that most of them were designed to identify the asso- 

iation between the single nucleotide polymorphisms (SNPs) and 

https://doi.org/10.1016/j.media.2021.102003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102003&domain=pdf
mailto:dulei@nwpu.edu.cn
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.media.2021.102003
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rain imaging quantitative traits (QTs) ( Du et al., 2018; 2020a; 

020b; 2020c; Bi et al., 2020a; 2020b ). Technically speaking, both 

he regression methods and sparse canonical correlation analysis 

SCCA) methods were widely used. For example, based on regres- 

ion alone, Wang et al. (2012) proposed the multi-task regression 

nd classification to combine SNPs and imaging QTs to predict 

he memory deterioration and diagnostic status. Using SCCA alone, 

an et al. (2017) studied the association between proteomic ana- 

ytes and brain imaging QTs. In addition, the integration of regres- 

ion and SCCA were also proposed to identify associations among 

NPs, imaging QTs and diagnostic outcomes ( Zille et al., 2018 ). 

o the best of our knowledge, regression methods are typically 

ot designed to directly identify SNP-QT correlations ( Wang et al., 

012 ), and the classical SCCA could only handle two distinct types 

f biomarkers ( Lin et al., 2014; Fang et al., 2016; Yan et al., 2017;

u et al., 2018 ). Their combination still confronts with the same is- 

ue as SCCA. Consequently, it is essential and important to develop 

ovel methods to efficiently and practically identify multi-way as- 

ociations among more than three different types of biomark- 

rs. By looking into this complex multi-way associations, it would 

eepen our understanding of the pathological characteristics of AD. 

To identify associations among multiple different types of 

iomarkers, the results combination strategy could be an alter- 

ative. It first analyzes each kind of biomarkers independently, 

nd then combines the results together to draw a meta conclu- 

ion. Obviously, the interplays among different types of biomark- 

rs are overlooked. SMCCA ( Witten and Tibshirani, 2009 ) is an- 

ther alternative, but directly applying it to identify multi-way 

ssociations usually suffers from the gradient domination issue 

 Kendall et al., 2018 ) which comes out of the unfair objectives 

ombination ( Hu et al., 2017 ). This is a common problem in imag-

ng genomics since, in general, significantly different correlation 

evels exhibit among multiple types of biomarkers. For example, 

he correlation coefficient whose value range is [ −1 , 1] (or [0,1] 

n absolute value), obtained by SCCA, between SNPs and struc- 

ural imaging QTs such as grey matter loss is around [0.2, 0.3] 

 Du et al., 2021 ), while that between proteomic markers and struc- 

ural imaging QTs such as cortical thickness is much higher, with 

alues being around 0.7 for training and 0.38 for testing ( Yan et al.,

017 ). This significant difference incurs gradient domination, and 

hus leads to the biased optimization. More seriously, as the kinds 

f biomarkers increase, the gradient domination will get worse. 

his further deteriorates SMCCA’s performance due to its naive fu- 

ion strategy. Hu et al. (2017) proposed an adaptive SMCCA, named 

daSMCCA in this paper, which assigns an adaptive weight for 

ach SCCA model. Unfortunately, this method still suffers from 

he gradient domination. And, since it treats covariance matrices 

o be identity ones, AdaSMCCA is lacking the theoretical guaran- 

ee of consistency and convergence, which might be unreliable 

 Chen et al., 2013 ). Therefore, to better identify multi-way bi- 

ultivariate associations, developing more adaptive methods, with 

olid theoretical properties to handle the gradient domination is- 

ue, would be very valuable and meaningful. 

In this article, we revisited SMCCA and its limitation in multi- 

ay association identification for imaging genomics. To overcome 

he gradient domination, we first proposed a robustness-aware 

daSMCCA (rAdaSMCCA) method which adaptively balances be- 

ween multiple pairwise SCCA models. In addition, to ensure the 

election of meaningful biomarkers, we imposed fused pairwise 

roup Lasso (FGL) ( Du et al., 2020c ) and Lasso to regularize SNPs,

nd Lasso to both proteomic markers and imaging QTs. We fur- 

her found that rAdaSMCCA still suffers from the gradient domi- 

ation issue caused by extreme SCCA model. Therefore, we pro- 

osed a novel uncertainty-aware AdaSMCCA (unAdaSMCCA) which 

esolves the gradient domination issue well with desirable theoret- 

cal properties. The contributions of this study were fourfold. First, 
2 
e proposed two novel AdaSMCCA methods, i.e. rAdaSMCCA and 

nAdaSMCCA, which could identify multi-way bi-multivariate asso- 

iations among multiple ( ≥ 3 ) types of biomarkers without blindly 

using them. We first introduced rAdaSMCCA since it is an en- 

ancement of AdaSMCCA, and then we introduced unAdaSMCCA 

hich is better than rAdaSMCCA and AdaSMCCA in terms of mod- 

ling. Second, both methods overcame the gradient domination is- 

ue, and unAdaSMCCA was the best one to overcome this issue. 

n this study, addressing the gradient domination enabled a bet- 

er identification of relationships among SNPs, proteomic analytes, 

nd imaging measurements, which could yield interesting findings 

f AD. Third, the feature grouping penalty for SNPs automatically 

earnt the grouping structure embedded within neighbouring SNPs. 

his data-driven regularization could extract SNPs jointly affecting 

roteomic QTs and imaging QTs. Fourth, to efficiently solve two 

odels, we derived an alternative iteration algorithm with its con- 

ergence demonstrated. 

In the experiments, we compared rAdaSMCCA and un- 

daSMCCA with two state-of-the-art methods, including SMCCA 

 Witten and Tibshirani, 2009 ) and adaptive SMCCA ( Hu et al., 

017 ), on four synthetic data sets and one real data set includ- 

ng SNPs, proteomic analyte markers and imaging QTs of 244 sub- 

ects from the Alzheimer’s disease neuroimaging initiative (ADNI) 

atabase. The results on both synthetic and real data sets showed 

hat rAdaSMCCA and unAdaSMCCA identified higher canonical cor- 

elation coefficients and better canonical weight patterns indicat- 

ng enhanced feature selection capability. In particular, unAdaSM- 

CA performed the best owing to its well-designed loss balancing 

trategy. In sum, all these results demonstrated that both rAdaSM- 

CA and unAdaSMCCA held very promising power, with unAdaSM- 

CA being the best, in identifying multi-way bi-multivariate asso- 

iations among SNPs, proteomic analytes and imaging QTs. There- 

ore, our proposed rAdaSMCCA and unAdaSMCCA were promising 

ethods for identifying multi-way associations among multi-omics 

ata in brain imaging genomics. 

. Method 

Throughout this article, we denote vectors as lowercase letters, 

nd matrices as uppercase letters. Specifically, X = (x i j ) denotes a 

atrix, and its i -th row and j-th column are separately denoted by 

 

i and x j . The Euclidean norm of x is denoted as ‖ x ‖ 2 = 

√ ∑ 

x 2 
i 
. 

.1. Sparse multi-view canonical correlation analysis (SMCCA) 

Given multiple types of data including SNPs, proteomic expres- 

ion markers and imaging QTs, SMCCA can be applied to find 

heir multi-way associations. Suppose we have n subjects with p

NPs, d proteomic markers and q imaging QTs, and then let X 1 ∈ 

 

n ×p denote the SNP data, X 2 ∈ R 

n ×d denote the proteomic ex- 

ression data, and X 3 ∈ R 

n ×q denote the QT data, SMCCA combines 

hree pairwise SCCA models with respect to these three types of 

iomarkers, and maximizes this integrated objective as a whole 

 Witten and Tibshirani, 2009 ). In particularly, SMCCA is formally 

efined as 

min 

w 1 , w 2 , ··· , w K 

∑ 

i< j 

−w 

� 
i X 

� 
i X j w j + 

∑ 

k 

�( w k ) 

.t. ‖ 

X k w k ‖ 

2 
2 = 1 , ∀ k = 1 , · · · , K. 

(1) 

 k is the canonical weight for each kind of biomarkers respec- 

ively, and �( w k ) is the regularization term which introduces spar- 

ity, thereby leading to selection of biomarkers of interest. The 

radeoff parameters (explicitly presented later) have been absorbed 

n �(·) for simplicity. 
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Since ‖ X k w k ‖ 2 2 = 1 , we easily obtain the following equivalent 

ormula 

min 

w 1 , w 2 , ··· , w K 

∑ 

i< j 

∥∥X i w i − X j w j 

∥∥2 

2 
+ 

∑ 

k 

�( w k ) 

.t. ‖ 

X k w k ‖ 

2 
2 = 1 , ∀ k = 1 , · · · , K. 

(2) 

his fusion objective is in least square form which is sensitive to 

ts sub-objective with a very large value, and thus tends to incur 

iased optimization. As analyzed earlier, pairwise association levels 

mong multiple types of biomarkers are different, and sometimes 

ignificantly different. Thus simply fusing multiple SCCA models 

ould be suboptimal. Moreover, in the implementation, SMCCA 

ssumes X 

� 
k 

X k = I which might further degrade the performance 

 Chen et al., 2013; Du et al., 2014 ). 

.2. AdaSMCCA 

Hu et al. ( Hu et al., 2017 ) proposed the adaptive SMCCA 

AdaSMCCA) to alleviate the gradient domination issue. The 

daSMCCA is defined as 

min 

w 1 , w 2 , ··· , w K 

∑ 

i< j 

−κi j w 

� 
i X 

� 
i X j w j + 

∑ 

k 

λk ‖ 

w k ‖ 1 

.t. ‖ 

w k ‖ 

2 
2 = 1 , ∀ k = 1 , · · · , K, 

(3) 

here λk is a positive tradeoff parameter which controls the model 

parsity. κi j is an iteratively varying weight rather than a fixed one. 

pecifically, κi j is calculated from 

ˆ κi j ̂  w 

� 
i 

X 

� 
i 

X j ̂  w j 

cor r (X i ̂  w i , X j ̂  w j ) 
= 

κi j w 

� 
i 

X 

� 
i 

X j w j 

cor r (X i w i , X j w j ) 
, (4) 

ith ˆ κi j denoting the updated κi j after each iteration. 

The key point of AdaSMCCA is that it keeps forcing each SCCA 

ub-objective to remain its original importance. But this model has 

wo drawbacks. For one thing, it assumes X 

� 
k 

X k = I which breaks 

he Pearson correlation coefficient’s range ( [ −1 , 1] , or [0,1] in ab-

olute value), paying the price for introducing unknown risks. Ac- 

ording to Chen et al. (2013) , this approximation could result in 

o guarantee of convergence and consistency. For another, this ad- 

itional weight κi j is defined to pull its SCCA model back to the 

alue range, and thus it still suffers from the gradient domination 

ssue. 

.3. Robustness-aware AdaSMCCA 

To address the gradient domination, we here propose the 

obustness-aware AdaSMCCA (rAdaSMCCA) which uses the non- 

quared loss function rather than the squared one, 

min 

w 1 , w 2 , ··· , w K 

∑ 

i< j 

∥∥X i w i − X j w j 

∥∥
2 

+ 

∑ 

k 

�( w k ) 

.t. ‖ 

X k w k ‖ 

2 
2 = 1 , ∀ k = 1 , 2 , · · · , K. 

(5) 

his non-squared loss function is robust to extreme sub-objective 

hich probably dominate the optimization. The penalty �( w k ) is 

sed to induce the sparsity, which is beneficial to interpretation. 

enerally, SNPs, both independently and jointly, affect expression 

evels of proteomic markers and measurements of imaging QTs 

 Reich et al., 2001 ). To figure out the isolated influence of a lo-

us, we use the � 1 -norm to regularize the weight of SNP data. 

eanwhile, to identify the joint impact of multiple loci, we use 

he fused pairwise group Lasso (FGL) ( Du et al., 2020c ) to penal-

ze every two neighbouring loci in light of their genomic position. 

herefore, �( w 1 ) for SNP data takes the following form 

( w 1 ) = λ1 β
p−1 ∑ 

i =1 

√ 

w 

2 
1 i 

+ w 

2 
1(i +1) 

+ λ1 (1 − β) ‖ 

w 1 ‖ 1 , (6) 
3 
here λ1 and β are nonnegative tuning parameters. β balances 

etween the effect of joint and individual feature selection, and 

urther λ1 balances between the whole penalty and the loss func- 

ion. As a result, this composited penalty encourages a hybrid and 

seful feature selection. 

Besides, neither every proteomic expression marker nor every 

maging QT involves in the progression of brain disorders, and 

hus sparse constraints to select relevant proteomic and imaging 

arkers are necessary too. To accommodate this, we employ � 1 - 

orm to help select both proteomic markers and imaging QTs, i.e. 

( w 2 ) = λ2 ‖ w 2 ‖ 1 and �( w 3 ) = λ3 ‖ w 3 ‖ 1 . 
Then specifically, to better identify associations among SNPs, 

roteomic markers and imaging QTs, we propose the rAdaSMCCA 

s follows 

min 

w k 

∑ 

1 ≤i< j≤3 

κi j 

∥∥X i w i − X j w j 

∥∥2 

2 
+ λ1 β‖ 

w 1 ‖ F GL 

 λ1 (1 − β) ‖ 

w 1 ‖ 1 + λ2 ‖ 

w 2 ‖ 1 + λ3 ‖ 

w 3 ‖ 1 

.t. ‖ 

X k w k ‖ 

2 
2 = 1 , ∀ k = 1 , 2 , 3 , and κi j = 

1 ∥∥X i w i − X j w j 

∥∥
2 

. 

(7) 

AdaSMCCA uses an iteration-changing other than fixed weight 

o adaptively weigh multiple sub-objectives during the iteration. 

n this account, rAdaSMCCA has three advantages. First, it as- 

igns adaptive weights to multiple SCCA loss functions, showing 

igher robustness than SMCCA. In particular, κi j will be large if 

X i w i − X j w j 

∥∥
2 

is small and vice versa. As expected, this can alle- 

iate the gradient domination. Second, this method is parameter- 

ree, and thus slightly increases the computational burden. Finally, 

AdaSMCCA employs FGL and � 1 -norm penalties to automatically 

nd out the group structures within SNPs, which is of great mean- 

ng owing to the LD in the human genome. 

According to robust learning technique ( Gao et al., 2015 ), the 

on-squared loss function can only weaken the gradient domina- 

ion issue other than eliminating it. Therefore, rAdaSMCCA is still 

ominated by the extreme sub-objective. In a word, both rAdaSM- 

CA and AdaSMCCA might be suboptimal due to the substantial 

ifference among multiple SCCA objectives. 

.4. Uncertainty-aware AdaSMCCA 

In this section, we propose a more adaptive method to ad- 

ress the gradient domination issue. According to Eq. (2) , in 

his regression-type model, each SCCA predicts w i based on X i , 

 j and w j . For ease of presentation, we denote this prediction 

s f i (X i , X j , w j ) , and f i (w j ) for short. Generally, the output of

 i (w j ) follows a Gaussian distribution and we have the probabilis- 

ic model 

p(w i | f i (w j )) = N (f i (w j ) , σ
2 
i j ) , (8)

here σ 2 
i j 

is the variance which measures the noise of the output 

 Kendall et al., 2018 ). f i (w j ) and f j (w i ) are symmetric, and thus

i j = σ ji . In this article, we have three types of biomarkers, and 

hus three SCCA models corresponding to three probabilistic mod- 

ls, 

p(w 1 | f 1 (w 2 )) = N (f 1 (w 2 ) , σ
2 
12 ) , p(w 2 | f 2 (w 3 )) 

 N (f 2 (w 3 ) , σ
2 
23 ) , p(w 3 | f 3 (w 1 )) = N (f 3 (w 1 ) , σ

2 
13 ) . 

(9) 

hen we can obtain the SMCCA likelihood by maximizing the prod- 

ct of these probabilities, i.e. 

max 
 1 , w 2 , w 3 

p(w 1 | f 1 (w 2 )) p(w 2 | f 2 (w 3 )) p(w 3 | f 3 (w 1 )) (10)
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2 The first diagonal element of ˜ D 1 is 1 √ 

w 2 
11 

+ w 2 
12 

, and the p-th diagonal element is 

1 √ 
w 2 

1(p−1) 
+ w 2 

1 p 

. Details are in ( Du et al., 2020c ). 
ased on the maximum likelihood inference, we take the logarithm 

f the objective, i.e. 

og [ p ( w 1 | f 1 ( w 2 ) ) p ( w 2 | f 2 ( w 3 ) ) p ( w 3 | f 3 ( w 1 ) ) ] 

∝ − 1 

2 σ 2 
12 

‖ X 1 w 1 − X 2 w 2 ‖ 

2 
2 −

1 

2 σ 2 
23 

‖ X 2 w 2 − X 3 w 3 ‖ 

2 
2 

− 1 

2 σ 2 
13 

‖ X 1 w 1 − X 3 w 3 ‖ 

2 
2 − log σ12 − log σ23 − log σ13 . (11) 

aximizing Eq. (11) is equivalent to minimizing the following ob- 

ective 

1 

2 σ 2 
12 

‖ 

X 1 w 1 − X 2 w 2 ‖ 

2 
2 + 

1 

2 σ 2 
23 

‖ 

X 2 w 2 − X 3 w 3 ‖ 

2 
2 

 

1 

2 σ 2 
13 

‖ 

X 1 w 1 − X 3 w 3 ‖ 

2 
2 + log σ12 + log σ23 + log σ13 . 

(12) 

t is interesting that this function takes the estimation variance 

nto account. Additionally, this estimation variance is also regular- 

zed to prevent it from increasing too much ( Kendall et al., 2018 ). 

Now plugging sparsity-inducing terms �(w k ) into this model, 

e propose the uncertainty-aware AdaSMCCA (unAdaSMCCA) 

odel, 

min 

w k 

∑ 

1 ≤i< j≤3 

1 

2 σ 2 
i j 

∥∥X i w i − X j w j 

∥∥2 

2 
+ log σi j 

 λ1 β‖ 

w 1 ‖ F GL + λ1 (1 − β) ‖ 

w 1 ‖ 1 + λ2 ‖ 

w 2 ‖ 1 + λ3 ‖ 

w 3 ‖ 1 

.t. ‖ 

X k w k ‖ 

2 
2 = 1 , ∀ k = 1 , 2 , 3 . 

(13) 

nAdaSMCCA assigns a more adaptive weight for each sub- 

bjective compared with AdaSMCCA and rAdaSMCCA. This fusion 

trategy has three advantages. First of all, the iteratively changing 

eight comes from the estimation variance, which is called un- 

ertainty of each SCCA model. This uncertainty can capture the 

elative confidence among SMCCA’s loss functions ( Kendall et al., 

018 ). Second, compared with AdaSMCCA and rAdaSMCCA, un- 

daSMCCA addresses the gradient domination surpassingly thanks 

o its well consideration on the estimation uncertainty. Addition- 

lly, unAdaSMCCA also holds the merit of diverse feature selection 

s rAdaSMCCA. 

.5. The optimization 

Both rAdaSMCCA and unAdaSMCCA follow the same modeling 

aradigm by iteratively reweighing each SCCA loss function. There- 

ore, we focus on solving unAdaSMCCA, and rAdaSMCCA can be 

olved in the same way. 

The problem Eq. (13) is difficult to solve due to the intertwined 

ultiple canonical weights. Thus we utilize the alternative itera- 

ion algorithm. According to Appendix A.2 ( Witten et al., 2009 ), 

he equality constraint, i.e. ‖ X k w k ‖ 2 2 = 1 , can be put aside with 

ocus on the unconstrained problem. Thus we obtain the uncon- 

trained objective with respect to w 1 with those remaining canon- 

cal weights and loss weights fixed, i.e. 

1 

2 σ 2 
12 

‖ 

X 1 w 1 − X 2 w 2 ‖ 

2 
2 + 

1 

2 σ 2 
13 

‖ 

X 1 w 1 − X 3 w 3 ‖ 

2 
2 

 λ1 β‖ 

w 1 ‖ F GL + λ1 (1 − β) ‖ 

w 1 ‖ 1 

(14) 

o minimize this equation, we take the derivative of this objective 

ith respect to w 1 , and set it to zero. Then we arrive at ((
1 

σ 2 
12 

+ 

1 

σ 2 
13 

)
X 

� 
1 X 1 + λ1 β ˜ D 1 + λ1 (1 − β) D 1 

)
w 1 

 

1 

σ 2 
X 

� 
1 X 2 w 2 + 

1 

σ 2 
X 

� 
1 X 3 w 3 . 

(15) 
12 13 

4 
 1 is a diagonal matrix with the i -th diagonal entry being 1 
| w 1 i | (i =

 , · · · , p) . ˜ D 1 is also a diagonal matrix, and its i -th diagonal ele-

ent is 1 √ 

w 

2 
1(i −1) 

+ w 

2 
1 i 

+ 

1 √ 

w 

2 
1 i 

+ w 

2 
1(i +1) 

(i = 2 , · · · , p − 1) 2 Guessing ini- 

ial values for ˜ D 1 and D 1 , we can proceed on to get the update w 1 

s 

w 1 = 

((
1 

σ 2 
12 

+ 

1 

σ 2 
13 

)
X 

� 
1 X 1 + λ1 β ˜ D 1 + λ1 (1 − β) D 1 

)−1 

1 

σ 2 
12 

X 

� 
1 X 2 w 2 + 

1 

σ 2 
13 

X 

� 
1 X 3 w 3 

)
. 

(16) 

By now, only the equality constraint remains unsolved. Gener- 

lly, a simple re-scaling step can be applied, i.e. 

 1 = 

w 1 

‖ 

X 1 w 1 ‖ 2 

. (17) 

The parameter σi j can also be similarly solved in closed-form, 

.e. 

i j = 

∥∥X i w i − X j w j 

∥∥
2 
. (18) 

Using the same procedure, we can obtain the closed-form solu- 

ion to both w 2 and w 3 

w 2 = 

((
1 

σ 2 
12 

+ 

1 

σ 2 
23 

)
X 

� 
2 X 2 + λ2 D 2 

)−1 

1 

σ 2 
12 

X 

� 
2 X 1 w 1 + 

1 

σ 2 
23 

X 

� 
2 X 3 w 3 

)
, 

 3 = 

((
1 

σ 2 
13 

+ 

1 

σ 2 
23 

)
X 

� 
3 X 3 + λ3 D 3 

)−1 

1 

σ 2 
13 

X 

� 
3 X 1 w 1 + 

1 

σ 2 
23 

X 

� 
3 X 2 w 2 

)
, 

(19) 

here D 2 and D 3 are two diagonal matrices, and their entries 

ake the same form as D 1 for w 1 . In particular, the i -th diago-

al element of D 2 is 1 
| w 2 i | (i = 1 , · · · , d) , and that of D 3 is 1 

| w 3 i | (i =
 , · · · , q ) . Finally, w 2 and w 3 can be further updated by the follow-

ng re-scaling steps 

 2 = 

w 2 

‖ 

X 2 w 2 ‖ 2 

, w 3 = 

w 3 

‖ 

X 3 w 3 ‖ 2 

. (20) 

Eqs. 16 –(20) indicate that we can alternatively obtain w 1 , w 2 

nd w 3 , as well as σ12 , σ13 and σ23 . During the iteration, final so- 

utions will be attained once the optimum or predefined stopping 

onditions are satisfied. In each iteration, those diagonal matrices 

re easy to calculate, and σ12 , σ13 and σ23 are also easy to ob- 

ain. To efficiently solve Eq. (16) and Eq. (19) , we solve a system 

f linear equations instead of calculating the inverse of covariance 

atrices. Hence our algorithms run fast with desired efficiency. Fi- 

ally, we present the procedure in Algorithm 1 . 

.6. Convergence analysis 

heorem 1. The Algorithm 1 monotonously decreases the objective 

alue of Eq. (13) during the iteration. 

roof 1. We first prove that the objective of Eq. (13) de- 

reases when solving w 1 . For ease of presentation, we de- 

ote the estimate of parameters at the current iteration t as 
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Algorithm 1: Uncertainty-aware AdaSMCCA Algorithm. 

Result : w 1 , w 2 and w 3 

Input SNP data X 1 ∈ R 

n ×p , proteomic expression data 

X 2 ∈ R 

n ×d , and imaging QT data X 3 ∈ R 

n ×q . The pre-tuned λ1 , 

λ2 , λ3 and β; 

Initialize w 1 ∈ R 

p×1 , w 2 ∈ R 

d×1 and w 3 ∈ R 

q ×1 ; 

while not converged do 

Calculate the diagonal matrices ˜ D 1 , D 1 , D 2 and D 3 ; 

Solve w 1 using Eq.~ (16), and scale w 1 so that 

‖ X 1 w 1 ‖ 2 2 = 1 ; 

Solve w 2 and w 3 using Eq.~(19), and scale w 2 and w 3 so 

that ‖ X 2 w 2 ‖ 2 2 = 1 , and ‖ X 3 w 3 ‖ 2 2 = 1 ; 

Solve σ12 , σ13 and σ23 according to Eq.~(18); 

Sorting w 1 , w 2 and w 3 in descending order based on the 

absolute value respectively. 
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w 

(t) 
1 

, w 

(t) 
2 

, w 

(t) 
3 

, σ (t) 
12 

, σ (t) 
13 

, σ (t) 
23 

} 

. Besides, we denote the objective 

f problem (14) as F ( w 1 ) : 

 ( w 1 ) 
def = 

1 

2 σ 2 
12 

‖ X 1 w 1 − X 2 w 

( t ) 
2 

‖ 

2 
2 + 

1 

2 σ 2 
13 

‖ X 1 w 1 − X 3 w 

( t ) 
3 

‖ 

2 
2 

+ λ1 β‖ w 1 ‖ FGL + λ1 ( 1 − β) ‖ w 1 ‖ 1 (21) 

Then we define 

 ( w 1 ) 
def = 

1 

2 σ 2 
12 

‖ X 1 w 1 − X 2 w 

( t ) 
2 

‖ 

2 
2 + 

1 

2 σ 2 
13 

‖ X 1 w 1 − X 3 w 

( t ) 
3 

‖ 

2 
2 

+ λ1 β
p−1 ∑ 

i =1 

⎛ ⎝ 

w 

2 
1 i 

+ w 

2 
1 ( i +1 ) 

2 

√ 

w 

( t ) 
1 i 

2 + w 

( t ) 
1 ( i +1 ) 

2 
+ 

√ 

w 

( t ) 
1 i 

2 + w 

( t ) 
1 ( i +1 ) 

2 

2 

⎞ ⎠ 

+ λ1 ( 1 − β) 

p ∑ 

i =1 

( 

w 

2 
1 i 

2 | w 

( t ) 
1 i 

∣∣ + 

∣∣w 

( t ) 
1 i 

∣∣
2 

) 

= 

1 

2 σ 2 
12 

‖ X 1 w 1 − X 2 w 

( t ) 
2 

‖ 

2 
2 + 

1 

2 σ 2 
13 

‖ X 1 w 1 − X 3 w 

( t ) 
3 

‖ 

2 
2 

+ λ1 β
(

1 

2 

w 

� 
1 ̃

 D 1 w 1 + 

1 

2 

w 

( t ) 
1 

� ˜ D 1 w 

( t ) 
1 

)
+ λ1 ( 1 − β) 

(
1 

2 

w 

� 
1 D 1 w 1 + 

1 

2 

w 

( t ) 
1 

� 
D 1 w 

( t ) 
1 

)
, (22) 

here ˜ D 1 and D 1 are defined in Eq. (15) , and the second equality 

an be easily verified. 

It is obvious that G ( w 1 ) is a convex quadratic function (smooth, 

ifferentiable everywhere) that satisfies 

 

(
w 

(t) 
1 

)
= F 

(
w 

(t) 
1 

)
, G ( w 1 ) ≥ F ( w 1 ) , ∀ w 1 ∈ R 

p (23) 

Since the estimate of w 1 at the next iteration t + 1 , expressed

n Eq. (16) and denoted as w 

(t+1) 
1 

, is the (global) minimizer of 

 ( w 1 ) , we have 

 

(
w 

(t+1) 
1 

)
≤ G 

(
w 

(t) 
1 

)
. (24) 

Putting (23) - (24) together, we have 

 

(
w 

(t+1) 
1 

)
≤ G 

(
w 

(t+1) 
1 

)
≤ G 

(
w 

(t) 
1 

)
= F 

(
w 

(t) 
1 

)
. (25) 

his proves the convergence, i.e. the objective decreases by fixing 

 2 and w 3 to solve w 1 . This conclusion remains unchanged after 

he re-scaling step according to the algorithm. 

We can alternatively draw the same conclusion with respect to 

 2 and w 3 , as well as σ12 , σ13 , σ23 respectively. Denoting our 

bjective as L (w , w , w ) and combining conclusions above to-
1 2 3 

5 
ether, we have 

L (w 

(t+1) 
1 

, w 

(t+1) 
2 

, w 

(t+1) 
3 

) ≤ L (w 

(t+1) 
1 

, w 

(t+1) 
2 

, w 

(t) 
3 

) 

L (w 

(t+1) 
1 

, w 

(t) 
2 

, w 

(t) 
3 

) ≤ L (w 

(t) 
1 

, w 

(t) 
2 

, w 

(t) 
3 

) , 
(26) 

hich completes the proof. 

We further know L (w 1 , w 2 , w 3 ) is lower bounded by zero.

herefore, according to Theorem 1, Algorithm 1 will converge to 

he optimum. 

. Experiment results 

We used the SMCCA ( Witten and Tibshirani, 2009 ) and Adap- 

ive SMCCA (AdaSMCCA) as benchmark methods. SMCCA simply 

ombines multiple SCCA models without consideration on gradient 

omination. AdaSMCCA combines these SCCA models with each of 

hem associated with an additional weight. By now, AdaSMCCA 

as the state-of-the-art SMCCA method. Therefore, this compari- 

on study could help show the efficiency and effectiveness of our 

roposed methods (The Matlab code of our AdaSMCCA methods 

s publicly available on https://github.com/dulei323/AdaSMCCA ). 

ince the main goal of this study is to identify the multi-way as- 

ociations among SNPs, proteomic analytes, and imaging measure- 

ents, those SCCA methods ( Lin et al., 2014; Fang et al., 2016; Du 

t al., 2016; 2018 ) that can only identify the pairwise association 

etween two types of data were excluded. 

Except SMCCA, there were four parameters for our methods 

nd three ones for AdaSMCCA, which should be fine-tuned before 

onducting experiments. We employed the nested 5-fold cross- 

alidation method where the inner loop took charge of seeking 

hem from a candidate interval. We used several heuristic rules to 

educe the time effort. In particular, β was limited in (0,1), and 

< 0 . 5 could be used if we preferred individual sparsity, while 

> 0 . 5 was the choice if group sparsity was preferable. λ1 , λ2 and

3 controlled sparsity levels for SNPs, proteomic biomarkers and 

maging QTs. In addition, since these penalty functions were mono- 

one increasing, relative large parameters should be used if the 

umber of biomarkers were large. Based on this, we first searched 

hree λ’s from 10 i ( i = −3 , −2 , −1 , 0 , 1 , 2 , 3 ). Once we obtained the

inner parameters, we went into the second tuning procedure in a 

uch smaller interval [0 . 1 , 0 . 2 , · · · , · · · , 1] . All methods ran on the

ame software platform, and used the same data partition to make 

he comparison fair. 

The stopping condition was set to max k 
k ∈{ 1 , 2 , 3 } 

max | w 

(t+1) 
k 

− w 

(t) 
k 

| ≤
with the tolerance error ε = 10 −5 . Experimentally, both rAdaSM- 

CA and unAdaSMCCA converge within about 20 ∼30 iterations, 

nd we additionally set the maximum number of iterations to 100 

o ensure the efficiency and performance. 

.1. Simulation study 

We simulated four data sets with different characteristics fol- 

owing the similar procedure to that used in ( Hu et al., 2017 ).

here were three matrices with the same number of subjects n, 

nd different number of features p, d and q respectively. The first 

hree data sets ( n = 200 , p = 150 , d = 200 and q = 150 ) were gen-

rated with the same ground truth, where the first two had differ- 

nt levels of gradient domination and the third one did not have. 

he fourth data set ( n = 500 , p = 350 , d = 800 and q = 400 ) had

 distinct number of feature dimensionality. In particular, we first 

uilt three sparse canonical weights w 1 ∈ R 

p×1 , w 2 ∈ R 

d×1 and 

 3 ∈ R 

q ×1 , as well as a latent variable z ∈ R 

n ×1 . Then X k was gen-

rated by (x i j ) k ∼ N (z i w k j , σk ) where k = 1 , 2 , 3 . Fig. 1 presented

he ground truths of four data sets in top row. 

https://github.com/dulei323/AdaSMCCA
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Fig. 1. Canonical weights on synthetic data sets. Results were shown row by row for all data. Within each data set, there were five rows corresponding to ground truth, 

SMCCA, AdaSMCCA, rAdaSMCCA and unAdaSMCCA respectively. Canonical weights w 1 , w 2 and w 3 were shown from left to right for each data set. 
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We showed the canonical correlation coefficients (CCCs) of each 

ethod in Table 1 , where a higher CCC indicates a better perfor- 

ance. These CCCs were averaged from five folds (repeated 20 

uns to enable stability) of four SCCA models and the standard 

eviations were also contained. For ease of presentation, we de- 

oted the CCC between X 1 and X 2 as CCC 1 −2 , and so on. In the ta-

le, unAdaSMCCA and rAdaSMCCA alternatively yielded the high- 

st CCCs, showing their enhanced performance. Interestingly, on 

ata 1 and Data 2 where the three SCCA sub-objectives were im- 

alanced, unAdaSMCCA and rAdaSMCCA outperformed both bench- 

arks by holding higher CCCs. On Data 3 where three SCCA sub- 

bjectives were balanced, all four methods obtained acceptable 

erformance. This demonstrated that our AdaSMCCA methods well 

ddressed the gradient domination issue while both benchmarks 

annot. Besides, we exhibited the canonical weight heat maps in 

ig. 1 . In this figure, we used distinct color bars for four meth- 

ds since different methods use different scale methods. The color 

ar can help show the relative importance of features, but will 

ot make the decision for a method. We observed that all four 

ethods successfully identified the true signals. However, if we 

bserved the panel of SMCCA and AdaSMCCA carefully, we can see 

hat there are many irrelevant signals which could mislead the fea- 
6 
ure selection results. In contrast, both unAdaSMCCA and rAdaSM- 

CA showed relative cleaner canonical weight profiles than bench- 

arks, which were in accordance with the ground truth. Combin- 

ng the results on CCCs and canonical weights together, unAdaSM- 

CA and rAdaSMCCA performed better than two competitors, espe- 

ially when the gradient domination issue does exist. This revealed 

hat our method can well address the gradient domination issue. 

n summary, this simulation study demonstrated the essential and 

uperiority of the adaptive strategy ( Kendall et al., 2018 ), and thus 

he success of our unAdaSMCCA. 

.2. Real neuroimaging genetic study 

The genotyping data, quantification of proteomic analytes 

n plasma and brain imaging data were obtained from the 

lzheimer’s Disease Neuroimaging Initiative (ADNI) database. The 

rimary goal of the initiative is to test whether serial magnetic 

esonance imaging (MRI), or other biological markers, and clini- 

al and neuropsychological assessment can be combined to mea- 

ure the progression of mild cognitive impairment (MCI) and 
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Table 1 

The averaged canonical correlation coefficients (CCCs) on synthetic data sets. 

Data 1 

Training Testing 

CCC 1 −2 CCC 2 −3 CCC 1 −3 CCC 1 −2 CCC 2 −3 CCC 1 −3 

SMCCA 0.8529 ± 0.1363 0.9924 ± 0.0052 0.8926 ± 0.1061 0.8051 ± 0.1807 0.9884 ± 0.0096 0.8631 ± 0.1309 

AdaSMCCA 0.9167 ± 0.1223 0.9958 ± 0.0043 0.9371 ± 0.0964 0.8951 ± 0.1491 0.9934 ± 0.0082 0.9254 ± 0.1075 

rAdaSMCCA 0.9999 ± 0.0000 0.9998 ± 0.0000 0.9999 ± 0.0000 0.9998 ± 0.0001 0.9997 ± 0.0001 0.9998 ± 0.0001 

unAdaSMCCA 0.9998 ± 0.0000 0.9998 ± 0.0000 0.9999 ± 0.0000 0.9998 ± 0.0001 0.9998 ± 0.0001 0.9998 ± 0.0001 

Data 2 

SMCCA 0.8105 ± 0.1388 0.8057 ± 0.1412 0.9954 ± 0.0025 0.7667 ± 0.1571 0.7594 ± 0.1622 0.9941 ± 0.0036 

AdaSMCCA 0.9416 ± 0.0993 0.9375 ± 0.1058 0.9979 ± 0.0021 0.9329 ± 0.1099 0.9273 ± 0.1186 0.9974 ± 0.0027 

rAdaSMCCA 0.9999 ± 0.0000 0.9999 ± 0.0000 0.9999 ± 0.0000 0.9999 ± 0.0001 0.9998 ± 0.0001 0.9999 ± 0.0000 

unAdaSMCCA 0.9999 ± 0.0000 0.9999 ± 0.0000 0.9999 ± 0.0000 0.9999 ± 0.0001 0.9998 ± 0.0001 0.9999 ± 0.0000 

Data 3 

SMCCA 0.9981 ± 0.0003 0.9982 ± 0.0002 0.9983 ± 0.0002 0.9978 ± 0.0006 0.9980 ± 0.0006 0.9981 ± 0.0005 

AdaSMCCA 0.9985 ± 0.0002 0.9985 ± 0.0002 0.9987 ± 0.0002 0.9983 ± 0.0005 0.9984 ± 0.0005 0.9986 ± 0.0004 

rAdaSMCCA 0.9998 ± 0.0000 0.9998 ± 0.0000 0.9999 ± 0.0000 0.9998 ± 0.0001 0.9997 ± 0.0001 0.9998 ± 0.0001 

unAdaSMCCA 0.9998 ± 0.0000 0.9998 ± 0.0000 0.9999 ± 0.0000 0.9998 ± 0.0000 0.9998 ± 0.0001 0.9998 ± 0.0001 

Data 4 

SMCCA 0.9953 ± 0.0043 0.9953 ± 0.0036 0.9961 ± 0.0039 0.9951 ± 0.0042 0.9950 ± 0.0039 0.9958 ± 0.0044 

AdaSMCCA 0.9991 ± 0.0009 0.9986 ± 0.0011 0.9991 ± 0.0005 0.9991 ± 0.0008 0.9986 ± 0.0010 0.9991 ± 0.0005 

rAdaSMCCA 0.9999 ± 0.0000 0.9996 ± 0.0000 0.9995 ± 0.0000 0.9998 ± 0.0000 0.9994 ± 0.0001 0.9993 ± 0.0001 

unAdaSMCCA 0.9998 ± 0.0000 0.9995 ± 0.0000 0.9994 ± 0.0000 0.9998 ± 0.0000 0.9994 ± 0.0001 0.9992 ± 0.0001 

Table 2 

Participant characteristics. 

NC MCI AD 

Num 42 137 65 

Gender (M/F, %) 52.38/47.62 69.34/30.66 55.38/44.62 

Handedness (R/L, %) 90.48/9.52 92.70/7.30 98.46/1.54 

Age (mean ±std) 75.40 ±5.80 74.13 ±7.22 74.75 ±7.67 

Education (mean ±std) 15.88 ±2.77 16.03 ±2.98 15.12 ±3.05 
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arly Alzheimer’s disease (AD). For up-to-date information, see 

ww.adni-info.org . 

We included 244 non-Hispanic Caucasian subjects with 42 nor- 

al controls (NCs), 137 MCIs and 65 ADs in this real study. The de- 

ailed participant characteristics were shown in Table 2 . The struc- 

ural magnetic resonance imaging (sMRI) scans were processed 

ith voxel-based morphometry (VBM) in SPM. In general, these 

cans were aligned to a T1-weighted template image, segmented 

nto gray matter (GM), white matter (WM) and cerebrospinal fluid 

CSF) maps, normalized to MNI space, and smoothed with an 

 mm 

3 FWHM kernel. We subsampled the whole brain and gen- 

rated 465 GM density measures as imaging QTs. 

The blood plasma samples of the same population were mea- 

ured by Rules Based Medicine, Inc. (RBM) proteomic panel. After 

uality control (QC), we obtained 146 proteomic markers. 
Fig. 2. Comparison of the averaged canonical correlation coefficients (CCCs) 

7 
The genotyping data from the ADNI website were genotyped 

sing the Human 610-Quad or OmniExpress Array platforms (Illu- 

ina, Inc., San Diego, CA, USA). After standard QC process and im- 

utation by MaCH software, we obtained each subject’s SNP data. 

n this study, we included 827 SNPs around AD risk genes such as 

POE, TOMM40 and APOC1 (boundary: 170kb) based on ANNOVAR 

nnotation. Given these SNPs, proteomic markers and brain imag- 

ng QTs, our aim is to study their multi-way bi-multivariate associ- 

tions, and to identify biomarkers of relevance which could enable 

 more targeted and in-depth follow-up analysis. 

.2.1. Multi-way bi-multivariate associations 

In Fig. 2 , we presented the averaged training and testing CCCs 

hich showed the multi-way bi-multivariate association identifi- 

ation ability. To facilitate the analysis, we denoted association be- 

ween SNPs and proteomic markers as SNP-Protein, similarly, that 

etween SNPs and imaging QTs as SNP-QT, and that between pro- 

eomic markers and imaging QTs as Protein-QT. It is clear that, 

verall, unAdaSMCCA obtained the highest CCCs. rAdaSMCCA ob- 

ained similar CCCs to unAdaSMCCA, and both of them outper- 

ormed SMCCA and AdaSMCCA. In addition, for training results, 

nAdaSMCCA yielded the highest CCCs on SNP-Protein and SNP- 

T, and rAdaSMCCA won out on Protein-QT. The similar conclu- 

ions could be drawn in testing CCCs as well. More interestingly, 

n both training and testing results on SNP-QT and Protein-QT, 

MCCA showed no obvious difference to those AdaSMCCA meth- 
across four SCCA models on 5-fold training and testing on ADNI data. 

http://www.adni-info.org
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Fig. 3. Canonical weights of SNPs from five-fold cross-validation trials. Each row corresponds to an SCCA method: (1) SMCCA; (2) AdaSMCCA; (3) rAdaSMCCA; and (4) 

unAdaSMCCA. 

Table 3 

Top ten SNPs identified by each method according to mean canonical weights. The absolute weight value 

showed the importance of each SNP. 

SMCCA AdaSMCCA rAdaSMCCA unAdaSMCCA 

SNP_ID Weight SNP_ID Weight SNP_ID Weight SNP_ID Weight 

rs11668327 0.1079 rs429358 0.1671 rs56131196 0.2000 rs429358 0.4433 

rs73052307 0.0998 rs5117 0.1540 rs4420638 0.2000 rs11668327 0.2000 

rs11669338 0.0994 rs12721051 0.1529 rs11668327 0.1883 rs4420638 0.0537 

rs11673139 0.0994 rs56131196 0.1529 rs76366838 0.0800 rs56131196 0.0537 

rs79429216 0.0981 rs4420638 0.1529 rs11665849 0.0602 rs12721051 0.0537 

rs111740474 0.0924 rs483082 0.1527 rs11668758 0.0602 rs76366838 0.0164 

rs429358 0.0918 rs438811 0.1527 rs75687619 0.0600 rs114536010 0.0164 

rs147901416 0.0879 rs59007384 0.1457 rs114536010 0.0600 rs75687619 0.0164 

rs12721051 0.0827 rs283815 0.1453 rs11669609 0.0392 rs188535946 0.0164 

rs56131196 0.0827 rs184017 0.1391 rs2142074 0.0392 rs140480140 0.0164 
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ds. This implies that both sub-objectives of SMCCA, i.e. SNP-QT 

nd Protein-QT, with relative low CCCs dominate the whole objec- 

ive of SMCCA, which results in a pronounced difference on SNP- 

rotein. We could also observe that AdaSMCCA alleviated the gra- 

ient domination to some extent but not all. In contrast, rAdaSM- 

CA improved the performance of AdaSMCCA, but it still suffered 

rom gradient domination owing to its halfway strategy of weigh- 

ng losses. Surprisingly, unAdaSMCCA addressed the gradient dom- 

nation issue quite well. unAdaSMCCA not only yielded the best 

r comparable CCCs on SNP-QT and Protein-QT, but also obtained 

he highest score on the association of SNP-Protein which, without 

 well-designed reweighting strategy, could probably be missed 

y the naive SMCCA model. Therefore, by iteratively reweighing 

ach sub-objective, significant improvement could be obtained. In 

 word, unAdaSMCCA performed the best thanks to its considera- 

ion of each sub-objective’s uncertainty as well as the elaborated 

egularization. 

.2.2. Identification and interpretation of SNPs 

In addition, identifying relevant biomarkers can be another im- 

ortant evaluate criterion, showing a method’s potential in fea- 

ure selection. We showed canonical weights in terms of SNP in 

ig. 3 with those top selected SNPs tagged. Both rAdaSMCCA and 

nAdaSMCCA exhibited a cleaner heatmap patterns than two com- 

etitors. To make it clear, we also presented the top ten SNPs iden- 

ified by each method in Table 3 where SNPs and their estimated 

eight (absolute) values were contained. It has been known that 

s429358 ( APOE ) has a strong influence on the risk of AD. As ex-
8 
ected, unAdaSMCCA identified this locus and recognized it as its 

op identified genotypic marker with a significant higher value. In- 

erestingly, rAdaSMCCA missed rs429358 in its top ten loci. Due to 

he FGL penalty, rAdaSMCCA identified several groups of loci, and 

heir combined effect could exceed that of rs429358. However, the 

urther investigation should be warranted. AdaSMCCA also identi- 

ed this locus but its weight value was similar to those remain- 

ng loci, which were hard to interpret. In addition, a literature 

earch showed that all selected SNPs, identified by unAdaSMCCA, 

ocated in MCI- or AD-related genes such as APOC1 and TOMM40 

 Gao et al., 2016; Zhou et al., 2019 ). Six out of ten loci identi-

ed by rAdaSMCCA were overlapped with that of unAdaSMCCA, 

ndicating its similar performance to unAdaSMCCA. More inter- 

stingly, owing to FGL penalty, both unAdaSMCCA and rAdaSM- 

CA showed a feature grouping result which was in agreement 

ith linkage disequilibrium (LD). For example, according to canon- 

cal weight values, unAdaSMCCA identified two groups, i.e. loci 

n APOC1 (rs4420638, rs56131196 and rs12721051) and TOMM40 

rs76366 838, rs114536010 and rs756 87619), in the top ten SNPs. 

s188535946 was in APOC1 group but it had not been reported 

o be an AD risk factor, and thus warranting further investiga- 

ion. rAdaSMCCA grouped rs4420638 and rs56131196 ( APOC1 ) to- 

ether, and their combined influence could dominate rs429358 in 

his model, thereby omitting rs429358. However, this combined 

mpact on AD should also be warranted via post hoc analysis. In 

ontrast, though SMCCA and AdaSMCCA also found out interesting 

NPs, they identified too many SNPs to be well interpreted. Addi- 

ionally, they both were lacking feature grouping ability and thus 
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Fig. 4. Canonical weights of proteomic expressions from five-fold cross-validation trials. Each row corresponds to an SCCA method: (1) SMCCA; (2) AdaSMCCA; (3) rAdaSM- 

CCA; and (4) unAdaSMCCA. 

Table 4 

Top ten proteomic markers identified by each method according to mean canonical weights. The absolute weight value 

showed the importance of each proteomic marker. 

SMCCA AdaSMCCA rAdaSMCCA unAdaSMCCA 

Protein_ID Weight Protein_ID Weight Protein_ID Weight Protein_ID Weight 

Testosterone-Total 0.2699 ApoE 0.4249 ApoE 0.4102 ApoE 0.5980 

FSH 0.2236 CD5L 0.2384 CgA 0.2037 CgA 0.2074 

CgA 0.2002 CRP 0.1737 MIG 0.1229 ApoB 0.1375 

ApoE 0.1975 CgA 0.1516 RAGE 0.1080 MIG 0.1148 

CD5L 0.1535 HCC-4 0.1504 PYY 0.0941 RAGE 0.1103 

PAI-1 0.1530 Cystatin-C 0.1393 TBG 0.0941 CD5L 0.0970 

LH 0.1401 Proinsulin-Intact 0.1307 Leptin 0.0844 TBG 0.0943 

BDNF 0.1385 GH 0.1200 SCF 0.0829 SCF 0.0812 

RANTES 0.1340 IGM 0.1186 Eotaxin-3 0.0825 Testosterone-Total 0.0609 

PLGF 0.1297 IL-13 0.1139 ApoC-I 0.0819 CRP 0.0418 

The full name of proteomic analytes is shown in the supplementary. 
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ould not find out structure information embedded among SNPs. 

n summary, by well considering the impact of gradient domina- 

ion, unAdaSMCCA held the best capability in identifying meaning- 

ul genetic biomarkers, and it, along with rAdaSMCCA, could iden- 

ify grouping structures within SNPs such as LD. 

.2.3. Identification and interpretation of proteomic markers 

Fig. 4 presented the heatmap showing the importance of pro- 

eomic markers, and Table 4 presented the top ten identified pro- 

eomic biomarkers. Both SMCCA and AdaSMCCA reported too many 

roteomic signals which were hard to interpret. That is, they could 

ot discriminate relevant proteomic biomarkers from irrelevant 

nes. In contrast, rAdaSMCCA and unAdaSMCCA yielded sparser 

anonical weight patterns, showing better feature selection re- 

ults than benchmarks, thereby providing a more targeted subse- 

uent analysis. In particular, nine out of ten proteomic markers 

dentified by unAdaSMCCA showed high correlation to AD or its 

rodromal stage. For example, ApoE, CgA ( Ciesielski-Treska et al., 

998 ), ApoB ( Wingo et al., 2019 ), MIG ( Soares et al., 2012 ), RAGE

 Deane et al., 2003 ), CD5L ( Hye et al., 2006 ), SCF ( Laske et al.,

011 ), CRP ( Nilsson et al., 2011 ) and Testosterone-Total ( Hall et al.,

015 ) were all demonstrated to be AD risk proteins. Only TBG 

as not been reported and thus further investigation should be 

arranted. These interesting results indicated that unAdaSMCCA 

ould accurately find out AD-related proteomic biomarkers. Be- 

ides, rAdaSMCCA had six proteins overlapping with unAdaSM- 

CA, and three other ones such as PYY, APOC1 were relevant to 
9 
D. More importantly, both unAdaSMCCA and rAdaSMCCA decided 

lear priorities for these proteomic markers, while both bench- 

arks assigned very similar values for most identified proteins im- 

lying a suboptimal protein selection capability. 

.2.4. Identification and interpretation of imaging QTs 

Finally, we investigated the identification of imaging QTs and 

howed canonical weights in Fig. 5 . Both benchmarks again ob- 

ained non-sparse canonical weights while rAdaSMCCA and un- 

daSMCCA yielded cleaner patterns. This indicated that our meth- 

ds hold stronger feature identification ability. Table 5 contained 

he top ten imaging QTs. The prominent imaging QTs of un- 

daSMCCA were hippocampus and parahippocampus, suggesting 

hat structural changes to these areas were an indicator of AD. 

his is in line with previous studies that AD patients suffer from 

evere atrophy in hippocampus. unAdaSMCCA also captured sig- 

als from frontal, cingulum, temporal and cerebelum, demonstrat- 

ng its power in detecting AD relevant imaging QTs, given widely 

eported correlations to AD pathology of these areas. rAdaSMCCA 

eported similar results with different priorities for imaging QTs. 

t additionally found out an AD-related deep area, i.e. thalamus 

 De Jong et al., 2008 ), showing its enhanced information mining 

bility. The top ten imaging QTs of SMCCA and AdaSMCCA were 

lso of interest. However, they estimated such many QTs of very 

imilar weight values that we could not confidently pick out rel- 

vant ones. This is unwelcome in practice since a clinician needs 

o figure out relevant imaging QTs in light of personal experi- 
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Fig. 5. Canonical weights of imaging QTs from five-fold cross-validation trials. Each row corresponds to an SCCA method: (1) SMCCA; (2) AdaSMCCA; (3) rAdaSMCCA; and 

(4) unAdaSMCCA. 

Table 5 

Top ten imaging QTs identified by each method according to mean canonical weights. The absolute 

weight value showed the importance of each QT. 

SMCCA AdaSMCCA rAdaSMCCA unAdaSMCCA 

QT_ID Weight QT_ID Weight QT_ID Weight QT_ID Weight 

HIP.L 0.1528 HIP.L 0.3107 PHG.L 0.2171 HIP.L 0.3535 

HIP.L 0.1439 HIP.L 0.1599 HIP.L 0.2084 PHG.L 0.2526 

PHG.L 0.1356 PHG.L 0.1376 HIP.L 0.1712 HIP.L 0.1693 

HIP.L 0.1317 SFGdor.L 0.1324 STG.L 0.1086 MFG.L 0.1110 

ANG.R 0.1079 HIP.L 0.1221 DCG.R 0.1063 DCG.R 0.1014 

HIP.R 0.0884 PUT.R 0.1103 MTG.R 0.0959 MTG.R 0.0884 

STG.R 0.0866 Cbe9.L 0.1074 ORBsup.L 0.0940 ORBsup.L 0.0852 

ORBmid.L 0.0859 THA.L 0.0998 DCG.L 0.0878 HIP.L 0.0755 

ANG.L 0.0855 HIP.R 0.0966 THA.R 0.0706 DCG.L 0.0745 

MOG.L 0.0843 IFGoperc.R 0.0929 CbeCru1.R 0.0659 CbeCru1.R 0.0529 

The full name of imaging QTs is shown in the supplementary. 
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Fig. 6. Pairwise correlation between the identified SNPs and plasma proteomic an- 

alytes, and ”×” indicated that this SNP-protein pair reached the significance level 

( p < 0 . 01 ). 

C

r

t

R

nce. To sum up, combining results on SNPs, proteomic makers and 

maging QTs together, our two AdaSMCCA methods outperformed 

oth state-of-the-art SMCCA methods, revealing their great poten- 

ial in multi-way association identification and feature selection for 

ulti-omics data fusion. 

.3. Refined analysis 

By now we have independently shown the relevance of identi- 

ed SNPs, proteomic markers and imaging QTs. To explain the re- 

ationships among these three types of markers, we conducted re- 

ned analysis in this subsection. For ease of presentation, we only 

howed the results of unAdaSMCCA, and those of other methods 

an be analyzed similarly. 

We first presented the pairwise correlation of SNPs and pro- 

eomic markers, as their associations irrespective of diagnosis 

ould be a useful screening tool for AD diagnosis and interven- 

ion ( Soares et al., 2012 ). Fig. 6 showed the heatmap of pairwise

orrelations of the top ten selected SNPs and proteomic markers, 

here blocks labeled with ”×” indicated that this SNP-protein pair 

eached the significance level ( p < 0 . 01 ). When looking vertically,

e can clearly observe that the monokine induced by gamma in- 

erferon (MIG) level was significantly correlated with all ten SNPs. 

esides, apolipoprotein E (ApoE) also showed a significant corre- 

ation with most (nine out of ten) SNPs. When looking horizon- 

ally, rs429358 was the most noticeable locus, implying that its 

igh correlation with plasma concentrations of ApoB, ApoE, CD5L, 
10 
gA, CRP and MIG. Another interesting thing is that rs56131196, 

s4420638 and rs188535946 exhibited the same correlation pat- 

ern with proteomic markers, indicating a grouping effect of them. 

ecall the results in subsection 3.2.2 , unAdaSMCCA grouped these 
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hree loci together by assigning them the same weight values. 

he same correlation patterns demonstrated the excellent perfor- 

ance of unAdaSMCCA. These correlations irrespective of diagnosis 

howed that ApoE and MIG, coupled with the locus rs429358 and 

oci (rs56131196, rs4420638 and rs188535946) of APOC1 , could be 

otential analytes for screening AD ( Soares et al., 2012 ). 

Further, we intend to uncover the impact of SNP-protein pair 

n brain imaging QTs. The two-way analysis of variance (ANOVA) 

as applied to investigate the effects of genotype, protein expres- 

ion levels and their SNP-by-protein interaction on imaging QTs 

ith age, gender, years of education and handedness being in- 

luded as covariates. We looked into two SNP-protein pairs, i.e. 

rs429358, ApoE) and (rs11668327, MIG), since (rs429358, ApoE) 

eld the highest negative correlation and (rs11668327, MIG) held 

he highest positive correlation. In addition, since the left hip- 

ocampus was the most relevant imaging QT identified by un- 

daSMCCA, we took it as the response in the ANOVA analysis. 

he two-way ANOVA results showed that only the main effect of 

s429358 genotype ( p = 9 . 03 −6 ) was significant on the left hip-

ocampus, while the main effect of ApoE concentrations (0.35) 

nd SNP by protein interaction (0.65) were insignificant. This is 

ery interesting and meaningful since it indicates that although 

he ApoE genotype was significantly correlated to AD-altered imag- 

ng QTs, the ApoE concentrations were not. We also analyzed the 

rs11668327, MIG)’s effect on the left hippocampus. The ANOVA re- 

ults showed that the main effects of both rs11668327 genotype 

 p = 2 . 20 × 10 −4 ) and MIG concentrations ( p = 0 . 03 ) reached the

ignificant level, but their SNP by protein interaction (0.55) was 

nsignificant. 

In summary, these statistical analysis results above confirmed 

he value of the multi-way association among SNPs, proteomic 

nd neuroimaging biomarkers. In the situation where one type 

f biomarkers malfunction, the other types of biomarkers can 

e added as a supplement. This indicates that using multi-omics 

iomarkers could deepen our understanding of the pathogenesis 

f AD. 

.4. Discussion 

We proposed two adaptive SMCCA methods to analyze the 

omplicated associations among genetic, proteomics, and neu- 

oimaging measurements. All the above results demonstrated that 

oth rAdaSMCCA and unAdaSMCCA performed better than exist- 

ng methods in identifying this complex multi-way association. The 

heory of rAdaSMCCA is simple since it naively uses the reciprocal 

f the square root of the sub-objective as an additional weight for 

ach sub-objective. This technique has been widely used in ma- 

hine learning to remove the impact of outliers and, in this pa- 

er, this can help remove the influence of outliers in terms of sub- 

bjective. unAdaSMCCA is more complicated but its performance 

s the best. In practice, we suggest employing rAdaSMCCA when 

ne faces a moderate gradient domination issue or has no idea of 

he gradient domination issue. In addition, if the gradient domi- 

ation is severe, we suggest using unAdaSMCCA attributing to its 

ell-designed counter-gradient-domination mechanism. 

. Conclusion 

Alzheimer’s disease is a multifactorial neurodegenerative dis- 

rder which could incur many abnormal alterations to the brain. 

rain imaging genomics jointly analyzes genetic variations, imag- 

ng QTs and other biomarkers such as proteomic expressions. Mul- 

iple heterogeneous markers carry valuable complementary infor- 

ation and fusing them might yield interesting findings. However, 

irectly fusing multiple SCCA models might be suboptimal due 

o undesired gradient domination. We proposed two AdaSMCCA 
11 
ethods, i.e. the robustness-aware AdaSMCCA and uncertainty- 

ware AdaSMCCA which could well address gradient domination. 

e also armed our methods with an automatic feature grouping 

enalty. An efficient algorithm is derived to solve both novel mod- 

ls and its convergence to a local optimum is provided. 

We used both synthetic data and real data in our experiments. 

he conventional SMCCA ( Witten and Tibshirani, 2009 ) and state- 

f-the-art one (AdaSMCCA ( Hu et al., 2017 )) were used as bench- 

arks. unAdaSMCCA not only obtained the highest CCCs, but also 

dentified cleaner and meaningful genetic variations, proteomic 

arkers and neuroimaging QTs. rAdaSMCCA also performed better 

han AdaSMCCA. In a word, all adaptive methods performed better 

han conventional SMCCA, demonstrating that it is the right direc- 

ion to design intelligently fusing methods in multi-omics studies. 

hough rAdaSMCCA and unAdaSMCCA were proposed for imaging 

enetics, they can also be applied to other real applications such as 

nalyzing the relationship among multimodal brain imaging data. 

n addition, the statistical analysis demonstrated the identification 

apability of the proposed methods. As a solid fusion strategy, it 

s interesting to apply our AdaSMCCA to genome wide association 

tudy, or to include more than three types of biomarkers. 
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ear Sir or Madam, 

Sorry to bother you. 

I am writing to ask for a Corrigendum regarding our recently accepted paper (Reference No. MEDIMA 102003. Title: Identifying Associ-

tions among Genomic, Proteomic and Imaging Biomarkers via Adaptive Sparse Multi-view Canonical Correlation Analysis). I find that we

ave missed one funding acknowledgments (National key R&D Program of China [2017YFB1002201]) in the ACKNOWLEDGEMENTS section,

hich is very important to me. So, may I ask that could you please do me a favour to add this funding information? For your convenience,

 have copied the full contents listed below, and if possible, you could just replace the second paragraph of the ACKNOWLEDGEMENTS

ection by this new content below. The text with the yellow background is the newly added text. 
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The authors would like to apologise for any inconvenience caused. 
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